A Standard Modulo Priestley Topological Quasi-Variety
نویسندگان
چکیده
منابع مشابه
Generalized Priestley Quasi-Orders
We introduce generalized Priestley quasi-orders and show that subalgebras of bounded distributive meet-semilattices are dually characterized by means of generalized Priestley quasi-orders. This generalizes the well-known characterization of subalgebras of bounded distributive lattices by means of Priestley quasiorders (Adams, Algebra Univers 3:216–228, 1973; Cignoli et al., Order 8(3):299– 315,...
متن کاملA note on quasi irresolute topological groups
In this study, we investigate the further properties of quasi irresolute topological groups defined in [20]. We show that if a group homomorphism f between quasi irresolute topological groups is irresolute at $e_G$, then $f$ is irresolute on $G$. Later we prove that in a semi-connected quasi irresolute topological group $(G,*,tau )$, if $V$ is any symmetric semi-open neighborhood of $e_G$, then...
متن کاملON ALGEBRAIC AND COALGEBRAIC CATEGORIES OF VARIETY-BASED TOPOLOGICAL SYSTEMS
Motivated by the recent study on categorical properties of latticevalued topology, the paper considers a generalization of the notion of topological system introduced by S. Vickers, providing an algebraic and a coalgebraic category of the new structures. As a result, the nature of the category TopSys of S. Vickers gets clari ed, and a metatheorem is stated, claiming that (latticevalu...
متن کاملa note on quasi irresolute topological groups
in this study, we investigate the further properties of quasi irresolute topological groupsdened in [20]. we show that if a group homomorphism f between quasi irresolute topologicalgroups is irresolute at eg, then f is irresolute on g. later we prove that in a semi-connectedquasi irresolute topological group (g; ; ), if v is any symmetric semi-open neighborhood ofeg, then g is generated by v...
متن کاملPriestley Rings and Priestley Order-Compactifications
We introduce Priestley rings of upsets (of a poset) and prove that inequivalent Priestley ring representations of a bounded distributive lattice L are in 1-1 correspondence with dense subspaces of the Priestley space of L. This generalizes a 1955 result of Bauer that inequivalent reduced field representations of a Boolean algebra B are in 1-1 correspondence with dense subspaces of the Stone spa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: GANIT: Journal of Bangladesh Mathematical Society
سال: 1970
ISSN: 2224-5111,1606-3694
DOI: 10.3329/ganit.v29i0.8513